Math, asked by btshah21, 7 months ago

prove that root 2 is irretional​

Answers

Answered by Anonymous
6

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \sqrt{2}

\large\underline\bold{TO\:PROVE, \sqrt{2}\:IS\:AN\: IRRATIONAL\: NUMBER.}

\large\underline\bold{SOLUTION,}

\sf\therefore \green{ let \: us \:assume\: that\: \sqrt{2}\: is \:a \:rational\: number.}

\sf\therefore \sqrt{2} = \dfrac{a}{b} \sf\red{\:---[ where\:a\:and\:b\:are\:integers\:and\:coprime\:and\:where\: b \neq 0]}

\sf\implies 2b=a

\sf\large\star squaring\:both\:sides .

\sf\implies 2b^2=a^2\:------ \boxed{1}

\sf\therefore 2\:is\:a\:factor\:of\:a^2

\sf\therefore 2\:is\:a\:factor\:of\:a

NOW,

\sf\star TAKING\: a=2m \sf\red{\:----[for\:m\:is\:a\:positive\:integer.]}

\sf\large\star squaring\:both\:sides .

\sf\implies a^2=4m^2\:----\boxed{2}

\sf\therefore \purple{FROM \:EQUATION \:1\: AND \:2.\: WE\: GET,}

\sf\implies 2b^2=4m^2

\sf\implies b^2= \dfrac{4m^2}{2}

\sf\implies b^2= \cancel  \dfrac{4m^2}{2}

\sf\implies  b^2= 2m^2

\sf\therefore 2\:is\:a\:factor\:of\:b^2.

\sf\therefore 2\:is\:a\:factor\:of\:b.

\sf\therefore here,a \:and\:b\:are\:coprimes \:and\:2\:cannot\:divide\:both(a\:and\:b) .

\sf\therefore hence,\:H.C.F\:of\:a\:and\:b\:is\:1.

\sf\therefore these\:contradiction\:has\:occured\:due\:to\:our\:wrong\: assumption\:that\:\sqrt{2}\:is\:a\:rational\:no.

WE CONCLUDE,

\large\underline\bold\red{\sqrt{2}\:IS\:AN\: IRRATIONAL\: NUMBER}

______________

Answered by ItzCaptonMack
0

\huge\mathcal{\fcolorbox{lime}{black}{\pink{Answer}}}

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \sqrt{2}

\large\underline\bold{TO\:PROVE, \sqrt{2}\:IS\:AN\: IRRATIONAL\: NUMBER.}

\large\underline\bold{SOLUTION,}

\sf\therefore \green{ let \: us \:assume\: that\: \sqrt{2}\: is \:a \:rational\: number.}

\sf\therefore \sqrt{2} = \dfrac{a}{b} \sf\red{\:---[ where\:a\:and\:b\:are\:integers\:and\:coprime\:and\:where\: b \neq 0]}

\sf\implies 2b=a

\sf\large\star squaring\:both\:sides .

\sf\implies 2b^2=a^2\:------ \boxed{1}

\sf\therefore 2\:is\:a\:factor\:of\:a^2

\sf\therefore 2\:is\:a\:factor\:of\:a

NOW,

\sf\star TAKING\: a=2m \sf\red{\:----[for\:m\:is\:a\:positive\:integer.]}

\sf\large\star squaring\:both\:sides .

\sf\implies a^2=4m^2\:----\boxed{2}

\sf\therefore \purple{FROM \:EQUATION \:1\: AND \:2.\: WE\: GET,}

\sf\implies 2b^2=4m^2

\sf\implies b^2= \dfrac{4m^2}{2}

\sf\implies b^2= \cancel  \dfrac{4m^2}{2}

\sf\implies  b^2= 2m^2

\sf\therefore 2\:is\:a\:factor\:of\:b^2.

\sf\therefore 2\:is\:a\:factor\:of\:b.

\sf\therefore here,a \:and\:b\:are\:coprimes \:and\:2\:cannot\:divide\:both(a\:and\:b) .

\sf\therefore hence,\:H.C.F\:of\:a\:and\:b\:is\:1.

\sf\therefore these\:contradiction\:has\:occured\:due\:to\:our\:wrong\: assumption\:that\:\sqrt{2}\:is\:a\:rational\:no.

WE CONCLUDE,

\large\underline\bold\red{\sqrt{2}\:IS\:AN\: IRRATIONAL\: NUMBER}

Similar questions