prove that root 2 -root 3 as an irrational
Answers
Answer:
❥ Lєt us αssumє , tσ thє cσntrαrч , thαt √2 -√3 ís rαtíσnαl.
thαt ís , wє cαn fínd cσprímє α αnd в ( в ≠ 0 ) such thαt √2 - √3 = α/b.
◆━━━━━━◆❃◆━━━━━━◆
Thєrєfσrє ,
√2 - √3 =
+ √3 = √2
Squaring on both sides, we get
↠ ( + √3 )² = (√2)²
↠ + 2√3 + ( √3 )² = 2
↠ + 2√3 + 3 = 2
↠ + 1 = - 2√3
↠ × - = √3
↠ = √3
Since , a and b are integers , is a rational number .
~ √3 is irrational number
❥ But thís cσntrαdícts thє fαct thαt √3 ís írrαtíσnαl.
thís cσntrαdíctíσn hαs αrísєn вєcαusє of σur íncσrrєct
αssumptíσn thαt √2 -√3 ís rαtíσnαl.
Sσ , Wє cσncludє thαt √2 -√3 ís írrαtíσnαl.
◆━━━━━━◆❃◆━━━━━━◆
❃ What is Rational Number ?
❥ A rαtíσnαl numвєr ís α numвєr thαt cαn вє єхprєss αs thє rαtíσ σf twσ íntєgєrs. α numвєr thαt cαnnσt вє єхprєssєd thαt wαч ís írrαtíσnαl.
❃ What is Irrational Number ?
❥ Thє írrαtíσnαl numвєrs αrє αll thє rєαl numвєrs whích αrє nσt rαtíσnαl numвєrs. thαt ís, írrαtíσnαl numвєrs cαnnσt вє єхprєssєd αs thє rαtíσ σf twσ íntєgєrs. ... ín thє cαsє σf írrαtíσnαl numвєrs, thє dєcímαl єхpαnsíσn dσєs nσt tєrmínαtє, nσr єnd wíth α rєpєαtíng sєquєncє.
hope this help and please mark this as brainliest