Math, asked by Aniamgailiang1607, 1 year ago

Prove that root 2+root 5 is irrational no

Answers

Answered by BranlyGirlHoney
1

let \: us \: assume \: that \:  \sqrt{2}  +  \sqrt{5} is \: a \:  \\ rational \: number

therefore \:  \sqrt{2}  +  \sqrt{5}  = p \div q

where \: p \: and \: q \: \\ are \: integers\: and \: q \: is \:  \\ not \: equal \: to \:  \\ zero

 =  > ( \sqrt{2}  +  \sqrt{5} ) {}^{2}  =(p \div q) {}^{2}

 =  > ( \sqrt{2}) {}^{2}  + 2( \sqrt{2})( \sqrt{5}) +  ( \sqrt{5}) {}^{2}    \\= p {}^{2}  \div q {}^{2}

2 + 2 \sqrt{10}  + 5 = p {}^{2}  \div  q {}^{2}

7 + 2 \sqrt{10}  = p {}^{2}  \div q {}^{2}

2 \sqrt{10}  = p {}^{2}  + 7q {}^{2}  \div q {}^{2}

here \: p {}^{2}  + 7q {}^{2}  \div q {}^{2} \: \: \\  is \: an \: irrational \: number \: \\but \: 2 \sqrt{10} is \: an \: irrational \: number \\ therefore \:  \sqrt{2} +  \sqrt{5}  is  \: an \:  \\ irrational \: number\\

hence \: our \: assumption \: was \: wrong

Answered by Anonymous
13

Question :-

Prove that √2 + √5 is irrational.

Solution :-

Let us assume that √2 + √5 is rational.

i.e, √2 + √5 = a/b where 'a' and 'b' are co primes and b ≠ 0

\tt \sqrt{2} + \sqrt{5} = \dfrac{a}{b}

\tt \sqrt{2} = \dfrac{a}{b} - \sqrt{5}

Squaring on both sides

\tt (\sqrt{2})^{2} = (\dfrac{a}{b} - \sqrt{5})^{2}

\tt \sqrt{4} = (\dfrac{a}{b})^{2} - 2( \dfrac{a}{b})( \sqrt{5}) + {( \sqrt{5})}^{2}

[Since (x - y)² = x² - 2xy + y² and above in RHS x = a/b, y = √5 ]

\tt 2 = \dfrac{a^{2} }{b^{2} } - 2\sqrt{5}. \dfrac{a}{b} + \sqrt{25}

\tt 2 = \dfrac{a^{2} }{b^{2} } - 2\sqrt{5}. \dfrac{a}{b} + 52

\tt 2 \sqrt{5}. \dfrac{a}{b} = \dfrac{a^{2} }{b^{2} }+ 5 - 22

\tt 2 \sqrt{5}. \dfrac{a}{b} = \dfrac{a^{2} }{b^{2} }+ 32

Taking LCM in RHS

\tt 2 \sqrt{5}. \dfrac{a}{b} = \dfrac{a^{2} + 3b^{2} }{b^{2} }2

\tt 2 \sqrt{5} = \dfrac{a^{2} + 3b^{2} }{b^{2} } \times \dfrac{b}{a}2

\tt 2 \sqrt{5} = \dfrac{a^{2} + 3b^{2} }{b } \times \dfrac{1}{a}2

\tt 2 \sqrt{5} = \dfrac{a^{2} + 3b^{2} }{ab}2

\tt \sqrt{5} = \dfrac{a^{2} + 3b^{2} }{2ab}

Since 'a' and 'b' are integers Right Hand Side i.e

\tt \dfrac{ {a}^{2} + 3{b}^{2} }{2ab}

is a rational number.

So, Left Hand Side of the equation is a rational number.

But, this contradicts the fact that √5 is irrational.

This contradiction has arised because of our wrong assumption that √2 + √5 is rational.

So we can conclude that √2 + √5 is irrational.

Hence proved :)

Similar questions
Math, 1 year ago