Math, asked by RoshanDhekan6879, 1 year ago

PROVE THAT ROOT 3 COS 23-SIN 23=2 COS 53

Answers

Answered by diya1234531
12

i hope it will help u

Attachments:
Answered by FelisFelis
7

\sqrt{3}\cos23^\circ-\sin23^\circ =2\cos53^\circ Proved.

Step-by-step explanation:

Consider the provided information.

We need to prove that: \sqrt{3}\cos23^\circ-\sin23^\circ =2\cos53^\circ

Consider the Right hand side:

2\cos53^\circ=2\cos(30^\circ+23^\circ)

Use the property: \cos(x+y)=\cos x \cos y-\sin x\sin y

2\cos53^\circ=2[\cos30^\circ\cos23^\circ-\sin30^\circ\sin23^\circ]

2\cos53^\circ=2[\frac{\sqrt{3}}{2}\cos23^\circ-\frac{1}{2}\sin23^\circ]

2\cos53^\circ=\sqrt{3}\cos23^\circ-\sin23^\circ

LHS=RHS

Hence, proved

#Learn more

Prove the trigonometric identity 1+ cot square A= cosec square A

brainly.in/question/2259148

Similar questions