Math, asked by dimpy786, 1 year ago

prove that root 3 is irrational and also give the statment​

Answers

Answered by Shivansh1mishra
1

This the required result of this answer please Mark this answer Brainliest.

Attachments:

dimpy786: hm
Shivansh1mishra: Mark my answer Brainliest
Shivansh1mishra: ty
dimpy786: which school ur in
Shivansh1mishra: ty
Shivansh1mishra: St. Patrick Sister
dimpy786: ty??
dimpy786: sister??
dimpy786: you know hindi
Shivansh1mishra: yes
Answered by QueenOfKnowledge
0

Let us assume that √3 is a rational number That is, we can find integers a and b (≠ 0) such that √3 = (a/b) Suppose a and b have a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime. √3b = a ⇒ 3b2=a2 (Squaring on both sides) → (1) Therefore, a2 is divisible by 3 Hence a is also divisible by 3. So, we can write a = 3c for some integer c. Equation (1) becomes, 3b2 =(3c)2 ⇒ 3b2 = 9c2 ∴ b2 = 3c2 This means that b2 is divisible by 3, and so b is also divisible by 3. Therefore, a and b have at least 3 as a common factor. But this contradicts the fact that a and b are coprime. This contradiction has arisen because of our incorrect assumption that √3 is rational. So, we conclude that √3 is irrational.

Similar questions