Math, asked by sanmathivenkatesh18, 5 months ago

prove that root 3 + root 5 is an irrational number.​

Answers

Answered by manjitkaur1621
3

Answer:

Hi friend!!

Let √3+√5 be a rational number.

A rational number can be written in the form of p/q where p,q are integers.

√3+√5 = p/q

√3 = p/q-√5

Squaring on both sides,

(√3)² = (p/q-√5)²

3 = p²/q²+√5²-2(p/q)(√5)

√5×2p/q = p²/q²+5-3

√5 = (p²+2q²)/q² × q/2p

√5 = (p²+2q²)/2pq

p,q are integers then (p²+2q²)/2pq is a rational number.

Then √5 is also a rational number.

But this contradicts the fact that √5 is an irrational number.

So,our supposition is false.

Therefore, √3+√5 is an irrational number.

plz mark brainliest

Step-by-step explanation:

Answered by nabihahsamil246
3

Let √3+√5 be a rational number.

A rational number can be written in the form of p/q where p,q are integers.

√3+√5 = p/q

√3 = p/q-√5

Squaring on both sides,

(√3)² = (p/q-√5)²

3 = p²/q²+√5²-2(p/q)(√5)

√5×2p/q = p²/q²+5-3

√5 = (p²+2q²)/q² × q/2p

√5 = (p²+2q²)/2pq

p,q are integers then (p²+2q²)/2pq is a rational number.

Then √5 is also a rational number.

But this contradicts the fact that √5 is an irrational number.

So,our supposition is false.

Therefore, √3+√5 is an irrational number.

or

let √3+√5 be any rational number x

x=√3+√5

squaring both sides

x²=(√3+√5)²

x²=3+5+2√15

x²=8+2√15

x²-8=2√15

(x²-8)/2=√15

as x is a rational number so x²is also a rational number, 8 and 2 are rational nos. , so √15 must also be a rational number as quotient of two rational numbers is rational

but, √15 is an irrational number

so we arrive at a contradiction t

this shows that our supposition was wrong

so √3+√5 is not a rational number

OR U CAN DO IT LIKE THIS :

we know that, √3 and √5 are irrational numbers

so we know that sum of two irrational numbers is also irrational

√3+√5 is also irrational

hope this helps

Similar questions