Prove that root 5 is an irrational number.
Answers
Answered by
1444
Let us assume that √5 is a rational number.
we know that the rational numbers are in the form of p/q form where p,q are intezers.
so, √5 = p/q
p = √5q
we know that 'p' is a rational number. so √5 q must be rational since it equals to p
but it doesnt occurs with √5 since its not an intezer
therefore, p =/= √5q
this contradicts the fact that √5 is an irrational number
hence our assumption is wrong and √5 is an irrational number.
hope it helped u :)
we know that the rational numbers are in the form of p/q form where p,q are intezers.
so, √5 = p/q
p = √5q
we know that 'p' is a rational number. so √5 q must be rational since it equals to p
but it doesnt occurs with √5 since its not an intezer
therefore, p =/= √5q
this contradicts the fact that √5 is an irrational number
hence our assumption is wrong and √5 is an irrational number.
hope it helped u :)
Answered by
820
"√5 is an “irrational number”.
Given:
√5
To prove:
√5 is a rational number
Solution:
Let us consider that √5 is a “rational number”.
We were told that the rational numbers will be in the “form” of form Where “p, q” are integers.
So,
we know that 'p' is a “rational number”. So 5 \times q should be normal as it is equal to p
But it did not happens with √5 because it is “not an integer”
Therefore, p ≠ √5q
This denies that √5 is an “irrational number”
So, our consideration is false and √5 is an “irrational number”."
Similar questions