prove that root 5 is an irrational number
Answers
Prove that root 5 is irrational number
Given: √5
We need to prove that √5 is irrational
Proof:
Let us assume that √5 is a rational number.
Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0
⇒√5=p/q
On squaring both the sides we get,
⇒5=p²/q²
⇒5q²=p² —————–(i)
p²/5= q²
So 5 divides p
p is a multiple of 5
⇒p=5m
⇒p²=25m² ————-(ii)
From equations (i) and (ii), we get,
5q²=25m²
⇒q²=5m²
⇒q² is a multiple of 5
⇒q is a multiple of 5
Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number
√5 is an irrational number
Hence
if,√5 is rational, then it can be expressed by some number a/b (in lowest terms). This would mean:
(a/b)² = 5. Squaring,
a² / b² = 5. Multiplying by b²,
a² = 5b².
If a and b are in lowest terms (as supposed), their squares would each have an even number of prime factors. 5b² has one more prime factor than b², meaning it would have an odd number of prime factors.
Every composite has a unique prime factorization and can't have both an even and odd number of prime factors. This contradiction forces the supposition wrong, so √5 cannot be rational. It is, therefore, irrational.