prove that root 5 is an irrational number
Answers
Answered by
0
root 5is a non terminating and non recurring number so it an irrational number
Answered by
0
Let us assume that √5 is a rational number.
we know that the rational numbers are in the form of p/q form where p,q are intezers.
so, √5 = p/q
p = √5q
we know that 'p' is a rational number. so √5 q must be rational since it equals to p
but it doesnt occurs with √5 since its not an intezer
therefore, p =/= √5q
this contradicts the fact that √5 is an irrational number
hence our assumption is wrong and √5 is an irrational number.
Similar questions
English,
7 months ago
Math,
7 months ago
Math,
1 year ago
History,
1 year ago
Social Sciences,
1 year ago