prove that root 5 is irrational
Answers
Answered by
0
Answer:
Let's prove this by the method of contradiction-
Say, √5 is a rational number. ∴ It can be expressed in the form p/q where p,q are co-prime integers.
⇒√5=p/q
⇒5=p²/q² {Squaring both the sides}
⇒5q²=p² (1)
⇒p² is a multiple of 5. {Euclid's Division Lemma}
⇒p is also a multiple of 5. {Fundamental Theorm of arithmetic}
⇒p=5m
⇒p²=25m² (2)
From equations (1) and (2), we get,
5q²=25m²
⇒q²=5m²
⇒q² is a multiple of 5. {Euclid's Division Lemma}
⇒q is a multiple of 5.{Fundamental Theorm
Answered by
0
Step-by-step explanation:
This is the answer of this question
Attachments:
Similar questions