Math, asked by riyathakkar444, 11 months ago

Prove that root 5 is not a rational number using conduction method

Answers

Answered by SarcasticL0ve
12

\star\;\;{\underline{\underline{\sf{\pink{To\;Prove:-}}}}}

  •  \sqrt{5} is an irrational number ( not a rational).

\star\;\;{\underline{\underline{\sf{\pink{Solution:-}}}}}

★ Lets  \sqrt{5} is a rational number.

Therefore, it can be written in form of \sf \dfrac{a}{b} where b ≠ 0 and a and b are co prime number(no common factor other than 1).

Hence,

:\implies\sf \sqrt{5} = \dfrac{a}{b} \\\\ :\implies\sf \sqrt{5} b = a \\\\ \;\;\;\;\;\small{\underline{\underline{\sf{\red{\dag\;Squaring\;both\;side:-}}}}} \\\\ :\implies\sf ( \sqrt{5} b)^2 = (a)^2 \\\\ :\implies\sf 5b^2 = a^2 \\\\ :\implies\sf \dfrac{a^2}{5} = b^2 \\\\ :\implies\sf Hence,\;5\;divides\; \bf{a^2} \\\\ :\implies\sf So,\;5\;divides\; \bf{a} \;also \;\;\;\;\;---[1]

\sf Hence\;we\;can\;say\;that: \\\\ \sf \dfrac{a}{5} = c, where\;c\;is\;some\;integer \\\\ \sf So,\; \bf{a = 5c}

\sf Now\;we\;know\;that \\\\ :\implies\sf 5b^2 = a^2 \\\\\ \;\;\;\;\;\small{\underline{\underline{\sf{\red{\dag\;Putting\;a = 5c}}}}}

:\implies\sf 5b^2 = (5c)^2 \\\\ :\implies\sf \cancel{5}b^2 = \cancel{25} c^2 \\\\\ :\implies\sf b^2 = 5c^2 \\\\ :\implies\sf \dfrac{b^2}{5} = c^2

:\implies\sf Hence,\;5\;divides\; \bf{b^2} \\\\ :\implies\sf So,\;5\;divides\; \bf{a} \;also \;\;\;\;---[2] \\\\ :\implies\sf By\;Eq[1]\;and\;Eq[2]:-

\normalsize\sf 5\;divides\;both\;a\;and\;b \\\\ \normalsize\sf Hence,\;5\;is\;a\;common\;factor\;of\;both\;a\;and\;b \\\\  \normalsize\sf Therefore,\;a\;and\;b\;are\;not\;co - prime

\normalsize\sf This\;become\;a\;contradiction. \\\\ \normalsize\sf Hence,\;our\;supposition\;is\;wrong. \\\\ {\underline{\underline{\sf{\purple{\dag\;Hence,\; \sqrt{5} \;is\;an\; irrational\;number.}}}}}

\rule{200}{3}

Answered by InfiniteSoul
6

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{Question}}}}}}}

  • Prove that root 5 is not a rational number using conduction method

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{Explanation}}}}}}}

Let √5 is a rational number

 \sqrt {5} = \dfrac{a}{b}

  • squaring both the sides

 5  = \dfrac{a^2}{b^2}

 a^2 = 5b^2

 a^2 \: is \: divisible \: by \: 5

 {\blue{a \: is \: also\ divisible \ by \ 5 }}---------(i)

 Let \ a = 5c

  • squaring both the sides

 a^2 = 25c^2

  •  a^2 =  5b^2

 5b^2 = 25c^2

 b^2 = 5c^2

 {b^2 \: is \:divisible \:by \:5}

 {\blue{b \: is\: also \: divisible \: by \: 5}}-----------(ii)

From (i) and (ii) , we get a and b both are divisible by 5 .

i.e. a and b have a common factor 5 .

This contradicts our assumptions that \dfrac{a}{b} is a rational number i.e. a and b do not have any common factor other than unity (1).

therefore

\sf\implies {\red{\dfrac{a}{b} \: is \: not\: rational}}

\sf\implies {\red{\sqrt 5 \: is \: not\: rational}}

\sf\implies{\red{\sqrt 5 \: is \: irrational}}

Similar questions