Math, asked by Disha109, 1 year ago

prove that root of 1+sin theta / 1-sin theta + root of 1-sin theta / 1+sin theta = 2 sec theta

Answers

Answered by mysticd
503

Answer:

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta

Step-by-step explanation:

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}

=\frac{\left(\sqrt{1+sin\theta}\right)^{2}+\left(\sqrt{1-sin\theta}\right)^{2}}{\sqrt{(1-sin\theta)(1+sin\theta)}}

=\frac{1-sin\theta+1+sin\theta}{\sqrt{1^{2}-sin^{2}\theta}}

=\frac{2}{\sqrt{cos^{2}\theta}}

= \frac{2}{cos\theta}

= 2sec\theta

=$RHS$

Therefore,

\sqrt{\frac{1+sin\theta}{1-sin\theta}}+\sqrt{\frac{1-sin\theta}{1+sin\theta}}=2sec\theta

•••♪

Answered by Kitkumar4544
43

Answer:

please mark brainlist one time because I have done in full explanation

Attachments:
Similar questions