Math, asked by rohin111bhattacharya, 10 months ago

prove that Root over 1 + sin theta by 1 minus sin theta equals to sec theta + tan thetap​

Answers

Answered by Anonymous
4

hope this helps you please mark it as a brainliest

Attachments:
Answered by ITzBrainlyGuy
7

Question:

 \small{ \rm{Prove \: that  \: \sqrt{ \frac{1  +  sin \theta}{1  -  sin \theta}  }  = sec \theta + tan \theta}}

Answer:

Taking LHS & multiplying & dividing with 1 + sinθ

 \small{ \rm{ =  \sqrt{ \frac{(1  + sin \theta)(1  + sin \theta)}{(1 + sin \theta)(1 - sin \theta)} } }}

Using

(a + b)(a - b) = a² - b²

 =  \sqrt{ \frac{(1 -  \sin \theta) ^{2} }{ {1}^{2} -  { \sin}^{2} \theta  } }

Using

1 - sin²θ = cos²θ

√a/b = √a/√b

 \small {\rm {  \frac{\sqrt{(1 + sin \theta) ^{2} } }{ \sqrt{ {cos }^{2} \theta } }  =  \frac{1 + sin \theta}{cos \theta} }}

We know that

a+b/2 = a/2 + b/2

 {\rm{ =  \frac{1}{cos \theta} +  \frac{sin \theta}{cos \theta} }}

Using

1/cosθ = secθ

sinθ/cosθ = tanθ

 \small{ \rm{ = sec \theta + tan \theta}}

LHS = RHS

Hence proved

CONCEPTS USED:

→ Trigonometric ratios

→ Trigonometric identities

Similar questions