English, asked by manishasingh7527, 10 months ago

prove that root under 1 + sin theta upon 1 minus sin theta gives tan theta + sec theta​

Answers

Answered by Anonymous
6

To Prove :

  •  \sqrt{ \frac{1 +  \sin( \theta ) }{1 -  \sin( \theta ) } }  =  \tan( \theta )  +  \sec( \theta )

Proof :

We have been given,

L.H.S =

 =  \sqrt{ \frac{1 +  \sin( \theta ) }{1 -  \sin( \theta ) } }  \\  \\  =  \sqrt{ \frac{1 +  \sin( \theta ) }{1 -  \sin( \theta ) }  \times  \frac{1  +  \sin( \theta ) }{1 +  \sin( \theta ) } }

But,

We know that,

  • (x + y)(x + y) =  {(x + y)}^{2}
  • (x + y)(x - y) =  { x}^{2}   -  {y}^{2}

Therefore,

We get,

 =  \sqrt{ \frac{ {(1 +  \sin \theta ) }^{2} }{1 -  { \sin }^{2} \theta  } }

But,

We know that,

  • 1 -  { \sin }^{2}  \alpha  =  { \cos }^{2}  \alpha

Therefore,

We get,

 =  \sqrt{ \frac{ {(1 +  \sin \theta ) }^{2} }{  { \cos }^{2} \theta   } }  \\  \\  =  \frac{1 +  \sin( \theta ) }{ \cos( \theta ) }  \\  \\  =  \frac{1}{ \cos( \theta ) }  +  \frac{ \sin( \theta ) }{ \cos( \theta ) }  \\  \\  =  \sec( \theta )  +  \tan( \theta )

= R.H.S

Thus,

  • L.H.S = R.H.S

Hence, \large\bold{Proved}

Similar questions