Math, asked by Anonymous, 9 months ago

Prove that root5 is rational

Answers

Answered by Anonymous
41

Answer:

hey friend your answer is here,

ANSWER

Let's prove this by the method of contradiction-

Say, √5 is a rational number. ∴ It can be expressed in the form p/q where p,q are co-prime integers.

⇒√5=p/q

⇒5=p²/q²  {Squaring both the sides}

⇒5q²=p²  (1)

⇒p² is a multiple of 5. {Euclid's Division Lemma}

⇒p is also a multiple of 5. {Fundamental Theorm of arithmetic}

⇒p=5m

⇒p²=25m²   (2)

From equations (1) and (2), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5. {Euclid's Division Lemma}

⇒q is a multiple of 5.{Fundamental Theorm of Arithmetic}

Hence, p,q have a common factor 5. this contradicts that they are co-primes. Therefore, p/q is not a rational number. This proves that √5 is an irrational number.  

hope it helps you

Answered by Anonymous
2
\huge\bigstar\mathfrak\red{AMSWER:-}
"√5 is an “irrational number”.

Given:

√5

To prove:

√5 is a rational number

Solution:

Let us consider that √5 is a “rational number”.

We were told that the rational numbers will be in the “form” of \frac{p}{q}form Where “p, q” are integers.

So, 

we know that 'p' is a “rational number”. So 5 \times q should be normal as it is equal to p

But it did not happens with √5 because it is “not an integer”

Therefore, p ≠ √5q

This denies that √5 is an “irrational number”

So, our consideration is false and √5 is an “irrational number”."

Similar questions