Prove that
(S-a)tanA/2=(s-b)tan B/2=(s-c)tanC/2
Answers
Before we solve this problem, we must know some formulae:
a/sinA = b/sinB = c/sinC ..... (1)
cosA = (b² + c² - a²)/(2bc)
cosB = (c² + a² - b²)/(2ca)
cosC = (a² + b² - c²)/(2ab)
Proof:
From (1), we write
a/sinA = b/sinB = c/sinC = k (≠ 0)
Then sinA = a/k, sinB = b/k, sinC = c/k
1st term = (s - a) tan(A/2)
= {(a + b + c)/2 - a} * sinA/(1 + cosA)
= (b + c - a)/2 * [(a/k) / {1 + (b² + c² - a²)/(2bc)}]
= (b + c - a)/2 * 2abc/k * 1/(b² + 2bc + c² - a²)
= abc (b + c - a)/k * 1/{(b + c)² - a²}
= abc (b + c - a)/k * 1/{(b + c + a)(b + c - a)}
= abc/{k (a + b + c)}
i.e, (s - a) tan(A/2) = abc/{k (a + b + c)}
Similarly using tan(B/2) = sinB/(1 + cosB) and tan(C/2) = sinC/(1 + cosC) from the last two terms given, we can obtain
(s - b) tan(B/2) = abc/{k (a + b + c)} and
(s - c) tan(C/2) = abc/{k (a + b + c)}
Therefore,
(s - a) tan(A/2) = (s - b) tan(B/2) = (s - c) tan(C/2)
Hence proved.