Math, asked by nicks9846, 19 days ago

Prove that's cos square A +cos square (60+A) +cos square (60-A) =3/2

Answers

Answered by mathdude500
5

Question :-

Prove that

\rm \:  {cos}^{2}A +  {cos}^{2}(60\degree +  A) +  {cos}^{2}(60\degree  - A) = \dfrac{3}{2}  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \:  {cos}^{2}A +  {cos}^{2}(60\degree +  A) +  {cos}^{2}(60\degree  - A) \\

can be rewritten as

\rm \: =  \: \dfrac{1}{2}\bigg(2{cos}^{2}A +  2{cos}^{2}(60\degree +  A) +  2{cos}^{2}(60\degree  - A)\bigg)\\

We know,

\boxed{\sf{  \: \: cos2x =  {2cos}^{2}x - 1 \: }} \\

So, using this identity, we get

\rm \: =  \: \dfrac{1}{2} \bigg(1 + cos2A + 1 + cos(120\degree  + 2A) + 1 + cos(120\degree  - 2A)\bigg)  \\

\rm \: =  \: \dfrac{1}{2} \bigg(3 + cos2A +  cos(120\degree  + 2A) + cos(120\degree  - 2A)\bigg)  \\

We know,

\boxed{\sf{  \:cos(x + y) + cos(x - y) = 2cosx \: cosy \:  \: }} \\

So, using this identity, we get

\rm \: =  \: \dfrac{1}{2} \bigg(3 + cos2A +  2cos120\degree cos2A\bigg)  \\

can be rewritten as

\rm \: =  \: \dfrac{1}{2} \bigg(3 + cos2A +  2cos(180\degree - 60\degree ) cos2A\bigg)  \\

We know,

\boxed{\sf{  \: \: cos(180\degree  - x) =  - cosx \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{1}{2} \bigg(3 + cos2A  - 2cos60\degree  \:  cos2A\bigg)  \\

\rm \: =  \: \dfrac{1}{2} \bigg(3 + cos2A  - 2 \times \dfrac{1}{2} \times  \:  cos2A\bigg)  \\

\rm \: =  \: \dfrac{1}{2} \bigg(3 + cos2A  -   \:  cos2A\bigg)  \\

\rm \: =  \: \dfrac{3}{2}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:  {cos}^{2}A +  {cos}^{2}(60\degree +  A) +  {cos}^{2}(60\degree  - A)  =  \frac{3}{2} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:sin(x + y) + sin(x - y) = 2sinx \: cosy \: }} \\

\boxed{\sf{  \:sin(x + y) -  sin(x - y) = 2cosx \: siny \: }} \\

\boxed{\sf{  \:cos(x - y) - cos(x + y) = 2sinx \: siny \: }} \\

\boxed{\sf{  \:sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\sf{  \:sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\sf{  \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

\boxed{\sf{  \:cosx -  cosy = -  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }} \\

Answered by Missincridedible
10

\color{red}\boxed{\colorbox{blue}{MISSINCRIDEDIBLE HERE}}

Attachments:
Similar questions