Prove that, S= r theta
Answers
Suppose the drawn circle intersects OX and OY at L and M respectively.
S is Equal to R Theta
1Save
Clearly, arc LM subtends ∠LOM at the centre O. Now, take an arc LN of length equal to the radius of the circle and join ON.
Then, by definition, ∠LON = 1 radian.
Since the ratio of two arcs in a circle is equal to the ratio of the angles subtended by the arcs at the center of the circle, hence,
∠LOM/∠LON = arc LM/arc LN
or, ∠LOM/1 radian = arc LM/radius OL
or, ∠LOM = arc LM/radius OL × 1 radian = arc LM/ radius OL radian.
Therefore, circular measures of ∠LOM is arc LM/radius OL
If θ be the circular measure of ∠LOM, arc LM = s and radius of the circle = OL = r then,
θ = s/r, [i.e. theta equals s over r]
or, s = r θ, [i.e. s r theta formula]
Therefore, now we know the meaning of “S is equal to r theta”
⭐⭐HOLA⭐⭐
ANSWER:-
Let, XOY be a given angle. Now, with centre O and any radius OL draw a circle.
Clearly, arc LM subtends ∠LOM at the centre O. Now, take an arc LN of length equal to the radius of the circle and join ON.
Then, by definition, ∠LON = 1 radian.
Since the ratio of two arcs in a circle is equal to the ratio of the angles subtended by the arcs at the center of the circle, hence,
∠LOM/∠LON = arc LM/arc LN
or, ∠LOM/1 radian = arc LM/radius OL
or, ∠LOM = arc LM/radius OL × 1 radian = arc LM/ radius OL radian.
Therefore, circular measures of ∠LOM is arc LM/radius OL
If θ be the circular measure of ∠LOM, arc LM = s and radius of the circle = OL = r then,
θ = s/r, [i.e. theta equals s over r]
or, s = r θ, [i.e. s r theta formula]
Therefore, now we know the meaning of “S is equal to r theta”
hope it helps uhh