Math, asked by SnehaChandnani, 1 year ago

Prove that
=
Sec 0 + Tan 0-1
Tan 6 - Sec 0+1
Cos 0
1 - Sin 0

Attachments:

Answers

Answered by raju9736
9

Step-by-step explanation:

the required answer is in the attatchment.hope it helps u..

Attachments:
Answered by TanikaWaddle
5

proved

Step-by-step explanation:

LHS = \frac{\sec\theta+\tan\theta-1}{\tan\theta-\sec \theta+1 }

\frac{\sec\theta+\tan\theta-1}{\tan\theta-\sec \theta+1 }\\\\\frac{(\sec\theta-\tan \theta)- (\sec^2\theta-\tan^2\theta)}{\tan\theta-\sec\theta+1}\\\\\frac{(\sec\theta+\tan \theta)- (\sec\theta + \tan\theta)(\sec\theta-\tan \theta)}{\tan\theta-\sec\theta+1}\\\\\frac{(\sec\theta + \tan\theta)(1- (\sec\theta - \tan\theta))}{\tan\theta-\sec\theta+1}

\frac{(\sec\theta + \tan\theta)(1-\sec\theta + \tan\theta)}{1-\sec\theta + \tan\theta}\\\\\sec\theta + \tan\theta\\\\\frac{1}{\cos\theta}+\frac{\sin\theta}{\cos\theta}\\\\\frac{1+\sin\theta}{\cos\theta}\\\\\frac{(1+\sin\theta)(1-\sin\theta)}{\cos\theta(1-\sin\theta)}\\\\\frac{1-\sin^2\theta}{\cos\theta(1-\sin\theta}\\\\\frac{\cos^2\theta}{\cos\theta(1-\sin\theta}\\\\\frac{\cos\theta}{1-\sin\theta}

hence proved

#Learn more :

https://brainly.in/question/15154497

Similar questions