Prove that :- √{(sec θ – 1)/(sec θ + 1)} = cosec θ - cot θ.
Answers
Answered by
2
SOLUTION
L.H.S
= √{(sec θ – 1)/(sec θ + 1)}
- [multiply numerator and denominator by √(sec θ - l)]
= √[{(sec θ - 1) (sec θ - 1)}/{(sec θ + 1) (sec θ - 1)}]
= √{(sec θ - 1)²/(sec²θ - 1)}
- [sec²θ = 1 + tan²θ ⇒ sec²θ - 1 = tan²θ]
=√{(sec θ - 1)²/tan²θ}
= (sec θ – 1)/tan θ
= (sec θ/tan θ) – (1/tan θ)
= {(1/cos θ)/(sin θ/cos θ)} - cot θ
= {(1/cos θ) × (cos θ/sin θ)} - cot θ
= (1/sin θ) - cot θ
= cosec θ - cot θ
= R.H.S
Hence Proved ✓✓
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Similar questions