Math, asked by tristinapegu44, 2 months ago

prove that √sec-1/sec+1=cosec-cot​

Answers

Answered by Nimo07
1

Answer:

Hi ,

Here I used A instead of theta.

LHS = √( secA - 1) / ( secA + 1 )

=√[(secA-1)²/(secA+1)(secA+1)

= √(secA -1 )²/(sec² A - 1 )

= √(secA - 1 )²/( tan² A )

= ( SecA - 1 ) / tanA

= SecA / tanA - 1/tanA

= ( 1/cosA ) / ( sinA/cosA ) - cotA

= 1/sinA - cotA

= CosecA - cotA

= RHS

I hope this helps you.

Answered by brainlychallenger99
1

Answer:

hey mate here is your answer

Step-by-step explanation:

LHS = √( secA - 1) / ( secA + 1 )

=√[(secA-1)²/(secA+1)(secA+1)

= √(secA -1 )²/(sec² A - 1 )

= √(secA - 1 )²/( tan² A )

= ( SecA - 1 ) / tanA

= SecA / tanA - 1/tanA

= ( 1/cosA ) / ( sinA/cosA ) - cotA

= 1/sinA - cotA

= CosecA - cotA

= RHS

I hope this helps you.

thank you

Similar questions