Math, asked by anuj05slg, 9 months ago

prove that, sec θ (1 − sin θ) (sec θ + tan θ) = 1

Answers

Answered by brahmanipalavala
3

hope this answer helps you

follow me

Mark me as brainlist

Attachments:
Answered by BrainlyPopularman
7

TO PROVE :

 \\ \to \:  { \bold{ \sec( \theta) \{1 -  \sin( \theta) \} \{ \sec( \theta) +  \tan( \theta) \} = 1}} \\

SOLUTION :

• Let's take L.H.S.

 \\ \:  =  \: { \bold{ \sec( \theta) \{1 -  \sin( \theta) \} \{ \sec( \theta) +  \tan( \theta) \} }} \\

• We know that –

 \\ \:  \:  \blacktriangleright \: \: { \bold{ \sec( \theta)  =  \dfrac{1}{ \cos( \theta) }  \:  \: and \:  \:  \tan( \theta)  = \dfrac{ \sin( \theta) }{ \cos( \theta) } }} \\

• So that –

 \\ \:  =  \: { \bold{  \dfrac{1}{\cos( \theta)} \{1 -  \sin( \theta) \}  \left\{ \dfrac{1}{\cos( \theta)} +  \dfrac{ \sin( \theta) }{ \cos( \theta) } \right \} }} \\

 \\ \:  =  \: { \bold{  \dfrac{1}{\cos( \theta)} \{1 -  \sin( \theta) \}  \left\{  \dfrac{ 1 + \sin( \theta) }{ \cos( \theta) } \right \} }} \\

 \\ \:  =  \: { \bold{  \dfrac{1}{\cos( \theta)} \left\{  \dfrac{ \{1 -  \sin( \theta) \}  \{1 + \sin( \theta) \}}{ \cos( \theta) } \right \} }} \\

 \\ \:  =  \: { \bold{  \dfrac{ \{1 -  \sin( \theta) \}  \{1 + \sin( \theta) \}}{ \cos^{2} ( \theta) }  }} \\

 \\ \:  =  \: { \bold{  \dfrac{1 -  \sin^{2} ( \theta)}{ \cos^{2} ( \theta) }    \:  \:  \:  \:  \:  \left[ \: \because \: (a - b)(a + b) =  {a}^{2} -  {b}^{2}   \right]}} \\

 \\ \:  =  \: { \bold{  \cancel \dfrac{{ \cos}^{2}( \theta)}{ \cos^{2} ( \theta) }    \:  \:  \:  \:  \:  \left[  \: \because \: 1 -  \sin^{2} ( \theta) =  { \cos}^{2}( \theta) \right]}} \\

 \\ { \bold{ \:  \:  =  \:  \: 1}} \\

 \\ { \bold{ \:  \:  =  \:  \: R.H.S.}} \\

 \\ { \bold{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underbrace{ Hence \:  \: proved}}} \\

Similar questions