Math, asked by Yadavchild67890, 1 year ago

Prove that √sec^2 A + cosec^2 A = tanA + cotA

Answers

Answered by Shaunak2409
4
√sec²A + cosec²A = tanA + cotA
LHS:
√sec²A + cosec²A = √1 + tan²A + 1 + cot²A
∵ sec²Ф = 1 + tan²Ф
cosec ²Ф = 1 + cot²Ф
∴√sec²A + cosec²A = √tan²A + 2 + cot²A
= √tan²A + 2( tanA × cotA ) + cot²A
= √ ( tanA + cotA )²
∵ tanФ × cotФ = 1
√sec²A + cosec²A = tanA + cotA
= RHS
Similar questions