Math, asked by abcd031004, 5 months ago

prove that :--
√sec^2 A + cosec^2 = tan A + cot A​

Answers

Answered by YASH2004
1

LHS

\sqrt{sec^2A+cosec^2A}

=\sqrt{1+tan^2A+1+cot^2A}   ( by identity  sec²A-tan²A=1 and cosec²A-cot²A=1)

=\sqrt{tan^2A+cot^2A+2}

=\sqrt{tan^2A+cot^2A+2tanA.cotA}   ( as tanA*cotA=1)

=\sqrt{(tanA+cotA)^2} [ as (a+b)²=a²+b²+2ab)]

=tanA+cotA

LHS=RHS

Hence proved

Similar questions