Math, asked by imkd, 1 year ago

prove that -
sec^2{tan^1(2)}+cosec^2{cot^1(3)=15


Desh: What is it that you want?

Answers

Answered by Janvi34
0
sec2 { sec -1 root 5 } + cosec2 { cosec -1 root 10}
{ using pythogeros }
{root 5 }2 +{ root 10} 2 = 15
May this help you
Answered by Haezel
5

Answer:

It is proved that \bold{\begin{equation}\sec ^{2}\left\{\tan ^{1}(2)\right\}+\csc ^{2}\left\{\cot ^{1}(3)\right\}=15\end{equation}}

Step-by-step explanation:

According to Trigonometric Identities we get

\begin{array}{l}{\sec ^{2}(x)=\tan ^{2}(x)+1} \\ {\csc ^{2}(x)=\cot ^{2}(x)+1}\end{array}

So, we take the value of \tan ^{-1}(2)=a \text { and } \cot ^{-1}(3)=b

Taking LHS separately and substituting,

Putting  \tan ^{-1}(2)=a \text { and } \cot ^{-1}(3)=b in \begin{equation}\sec ^{2}\left\{\tan ^{-1}(2)\right\}+\csc^{2}\left\{\cot ^{-1}(3)\right\}\end{equation}

We get

\begin{equation}\begin{array}{l}{\sec ^{2}\{a\}+\csc ^{2}\{b\}=15} \\ {\tan ^{2}(a)+1+\cot ^{2}(b)+1=15}\end{array}\end{equation}

Now, substituting the values we get,

\begin{equation}\tan ^{2}\left(\tan ^{-1}(2)\right)+1+\cot ^{2}\left(\cot ^{-1}(3)\right)+1=15\end{equation}

\begin{equation}\begin{array}{l}{\left(\tan \left(\tan ^{-1}(2)\right)^{2}\right)+1+\left(\cot \left(\cot ^{-1}(3)\right)^{2}\right)+1=15} \\ {(2)^{2}+1+(3)^{2}+1=15}\end{array}\end{equation}

4 + 1 + 9 + 1 = 15

Hence it is proved that LHS is equal to RHS (15 = 15).

Similar questions