Math, asked by Anonymous, 4 months ago

prove that
sec^2 theta+cosec^2 (180°-theta)=sec^2theta
.cosec^2theta ​

Answers

Answered by NewGeneEinstein
5

Answer:

To prove:-

\sf sec^2\theta+cosec^2(180°- \theta)=sec^2 \theta.cosec^2\theta

Proof:-

LHS:-

\\\qquad\quad\displaystyle\sf {:}\longrightarrow sec^2\theta+cosec^2 (180°-\theta)

\\\qquad\quad\displaystyle\sf {:}\longrightarrow sec^2\theta+\left\{ cosec (180°- \theta)\right\}^2

\\\qquad\quad\displaystyle\sf {:}\longrightarrow sec^2\theta+cosec^2\theta

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac{1}{cos^2\theta}+\dfrac {1}{sin^2\theta}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {sin^2\theta+cos^2\theta}{sin^2\theta.cos^2\theta}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac{1}{sin^2\theta.cos^2\theta}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \dfrac {1}{sin^2\theta}.\dfrac {1}{cos^2\theta}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow cosec^2\theta.sec^2\theta

\\\qquad\quad\displaystyle\sf {:}\longrightarrow RHS

\\\\\therefore\sf LHS=RHS\qquad_{(Proved)}

Similar questions