Prove that sec^2a-tan^2a=1
Answers
Answer:-
We have to prove:
Sec² A - tan² A = 1
Using sec² A = 1/Cos² A and tan² A = sin² A/Cos² A in LHS we get,
→ (1/Cos² A) - (Sin² A/Cos² A) = 1
→ (1 - sin² A)/Cos² A = 1
We know that,
sin² A + cos² A = 1
→ cos² A = 1 - sin²A
Hence,
cos² A/Cos² A = 1
→ 1 = 1
→ LHS = RHS
Hence, Proved.
How can we say that Sin² A + Cos² A = 1 ?
Let us take a right angled ∆PQR , right angled at Q .
Let PQ = x , QR = y .
Using Pythagoras Theorem,
→ (PR)² = (PQ)² + (QR)²
→ (PR)² = x² + y²
→ PR = √x² + y²
Let A be an angle at P.
We know that,
sin ∅ = Opposite side/Hypotenuse
→ Sin A = (PQ)/(PR) = y/√x² + y²
cos A = Adjacent side/Hypotenuse
→ Cos A = (QR)/(PR) = x/√x² + y²
→ sin² A + Cos² A = 1
→ (y/√x² + y²)² + (x/√x² + y²)² = 1
→ y²/(x² + y² )+ x²/(x² + y²) = 1
→ (x² + y²)/(x² + y²) = 1
→ 1 = 1
Hence, we can say that sin² A + Cos² A = 1.