Math, asked by sreedevikolloju16, 4 months ago

prove that sec^2Ø-(sin^2ø-2sin^4ø/2cos^4-cos^2ø)=1​

Answers

Answered by Anonymous
1

\large\sf\underline{ \underline{ \red{solution : }}} \\  \\

 \\  \implies \: \sf{  {sec}^{2}\theta  -  \frac{ {sin}^{2}\theta \:  - 2 {sin}^{4}\theta \:   }{2 {cos}^{4}\theta \:   -  {cos}^{2} \theta \: }  = 1} \\  \\  \\  \implies \: \sf{ {sec}^{2}\theta \:    -  \frac{ {sin}^{2}\theta \:  (1 - 2 {sin}^{2}\theta \: ) }{ {cos}^{2} \theta \: (2 {cos}^{2} \theta \:  - 1)} } \\  \\  \\  \implies \: \sf{ {sec}^{2}\theta \:  -  \frac{ {sin}^{2} \theta \: (1 -  {sin}^{2}  \theta \: -  {sin}^{2}\theta \:  ) }{ {cos}^{2}\theta \:  (2 {cos }^{2}\theta \:   - ( {sin}^{2}\theta \:   +  {cos}^{2}\theta \:  ))}  } \\  \\  \\  \implies \: \sf{ {sec}^{2}\theta \:   -  \frac{ {sin}^{2}\theta \: ( {cos}^{2}\theta \:   -  {sin}^{2}\theta \:   )}{ {cos}^{2}\theta \:  (2 {cos}^{2}\theta \:   -  {sin}^{2}\theta \:   -  {cos}^{2} \theta \: )} } \\  \\  \\  \implies \: \sf{ {sec}^{2}  \theta \: -  \frac{ {sin}^{2} \theta \: ( \cancel{ {cos}^{2}\theta \:  -  {sin}^{2} \theta \:  )}}{ {cos}^{2}\theta \:  ( \cancel{ {cos}^{2} \theta \: -  {sin}^{2}\theta \:   )} }} \\  \\  \\  \implies \: \sf{ \frac{1}{ {cos}^{2}\theta \:   }  - \frac{ {sin}^{2} \theta \: }{ {cos}^{2} \theta \: } } \\  \\  \\  \implies \: \sf{ \frac{1 -  {sin}^{2}\theta \:  }{  {cos}^{2}\theta \:  } } \\  \\  \\  \implies \: \sf{ \cancel{ \frac{ {cos}^{2} \theta \: }{ {cos}^{2} \theta \: } }} \\  \\  \\  \implies \: \sf{ 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (proved)}

 \\  \\

Important Identities :-

 \\  \\ \sf (1) \:  \:  {sin}^{2}  \theta +  {cos}^{2} \theta = 1 \\  \\  \\ \sf (2) \:  \: 1 +  {cot}^{2} \theta =  {cosec}^{2} \theta \\  \\  \\  \sf(3) \:  \: 1 +  {tan}^{2} \theta =  {sec}^{2} \theta

Similar questions