prove that
sec^2x+cosec^2x>4
Answers
Answered by
55
hey there !!
sec^2x = 1+tan^2 x
cosec^2x = 1+ cot^2x
so according to question,
sec^2x + cosec^2x = 2 + tan^2x+cot^2x
but , we know that A.M > G.M
so , (tan^2x + cot^2x)/2 >√(tan^2x.cot^2x)
=) tan^2x + cot^2x > 2 ×1
=) tan^2x + cot^2x >2
now ,
adding 2 on both sides , we get
(1 +tan^2x) + (1+cot^2x)> 2 + 2
=) sec^2x + cosec^2x >4
hence proved
sec^2x = 1+tan^2 x
cosec^2x = 1+ cot^2x
so according to question,
sec^2x + cosec^2x = 2 + tan^2x+cot^2x
but , we know that A.M > G.M
so , (tan^2x + cot^2x)/2 >√(tan^2x.cot^2x)
=) tan^2x + cot^2x > 2 ×1
=) tan^2x + cot^2x >2
now ,
adding 2 on both sides , we get
(1 +tan^2x) + (1+cot^2x)> 2 + 2
=) sec^2x + cosec^2x >4
hence proved
Similar questions