Math, asked by anzar75, 1 year ago

Prove that sec^2x-sin^2x/tan^2x=cosec^2x-cos^2x

Answers

Answered by abhi569
5
If x is any angle, solution :

 \text{To prove :} \dfrac{ \sec {}^{2} x -  \sin {}^{2}x  }{ \tan {}^{2} x}  =  \cosec {}^{2} x -  { \cos}^{2} x


Solving left hand side,

 \implies\dfrac{ \sec {}^{2} x -  \sin {}^{2}x  }{ \tan {}^{2} x}   \\  \\  \\  \implies \dfrac{ \sec {}^{2} x }{ \tan {}^{2}x} -   \dfrac{\sin {}^{2}x  }{ \tan {}^{2} x}


===========================
From the properties of trigonometry, we know : -
• sec²A = \dfrac{1}{cos^2 A}

• tan²A = \dfrac{sin^2A}{cos^2 A}
===========================


 \implies  \dfrac{ \dfrac{1}{ \cos {}^{2}x } }{  \dfrac{ \sin {}^{2}x }{ \cos {}^{2}x } } -   \dfrac{\sin {}^{2}x  }{  \dfrac{ \sin {}^{2} x}{ \cos {}^{2} x}} \\  \\  \\  \implies  \bigg \{ \dfrac{1}{ \cos {}^{2} x}  \times  \dfrac{ { \cos}^{2} x}{  { \sin}^{2} x}  \bigg \} -   \bigg \{\dfrac{ { \sin}^{2}x }{1}  \times  \dfrac{ { \cos}^{2}x }{ { \sin }^{2} x}   \bigg \} \\  \\  \\  \implies  \frac{1}{ { \sin}^{2} x}  -  { \cos}^{2} x \\  \\  \\  \implies  { \cosec}^{2} x -  { \cos}^{2} x



Hence,
\dfrac{ \sec {}^{2} x -  \sin {}^{2}x  }{ \tan {}^{2} x}  =  \cosec {}^{2} x -  { \cos}^{2} x


Proved.
Answered by Cutiepie93
5
Hello friends!!

Here is your answer :

Please see the attached file...

Hope it helps you

^_^
Attachments:
Similar questions