Prove that (sec^4 - sec^2) = tan^2 + tan^4
Answers
Answered by
3
Answer:
sec^4 A - sec^2 A = tan^2 + tan^4 A
Step-by-step explanation:
From the properties of trigonometry :
- 1 + tan^2 A = sec^2 A
- So, sec^2 A - 1 = tan^2 A
Here,
⇒ sec^4 A - sec^2 A
⇒ sec^2 A ( sec^2 - 1 )
⇒ sec^2 A( tan^2 ) { sec^2 A - 1 = tan^2 A }
⇒ ( 1 + tan^2 A )( tan^2 A ) { sec^2 A = 1 + tan^2 A }
⇒ tan^2 A + tan^4
Proved.
Similar questions
Chemistry,
5 months ago
English,
9 months ago
English,
9 months ago
Social Sciences,
1 year ago
Hindi,
1 year ago