Math, asked by pratikwagavekar11, 4 days ago

prove that,sec 4 theetha-1 / sec 2 theetha-1= tan 4 theetha/tan theetha

Answers

Answered by mathdude500
6

Prove that :-

\rm \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{sec4\theta  - 1}{sec2\theta  - 1}  = \dfrac{tan4\theta }{tan\theta }  \\

\large\underline{\sf{Solution-}}

Consider,

\rm \: \dfrac{sec4\theta  - 1}{sec2\theta  - 1}  \\

can be rewritten as

\rm \: =  \: \dfrac{\dfrac{1}{cos4\theta }  - 1}{\dfrac{1}{cos2\theta }  - 1}  \\

\rm \: =  \: \dfrac{\dfrac{1 - cos4\theta }{cos4\theta }}{\dfrac{1 - cos2\theta }{cos2\theta }}  \\

can be rewritten as

\rm \: =  \: \dfrac{(1 - cos4\theta )cos2\theta }{(1 - cos2\theta) cos4\theta } \\

We know,

\boxed{\sf{  \:1 - cos2x =  {2sin}^{2}x \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{2 {sin}^{2} 2\theta  \times cos2\theta }{2 {sin}^{2} \theta  \times cos4\theta }  \\

\rm \: =  \: \dfrac{2 {sin}2\theta  \times sin2\theta  \times cos2\theta }{2 {sin}^{2} \theta  \times cos4\theta }  \\

can be further rearrange as

\rm \: =  \: \dfrac{{sin}2\theta  \times(2 sin2\theta cos2\theta )}{2 {sin}^{2} \theta  \times cos4\theta }  \\

We know,

\boxed{\rm{  \:2 \: sinx \: cosx \:  =  \: sin2x \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{(2sin\theta cos\theta ) \times sin4\theta }{2 {sin}^{2} \theta  \times cos4\theta }

\rm \: =  \: \dfrac{ cos\theta\times sin4\theta }{sin\theta  \times cos4\theta }

\rm \: =  \: \dfrac{tan4\theta }{tan\theta }  \\

Hence,

\rm\implies \:\rm \: \:  \: \boxed{\rm{  \: \:  \:  \:  \:  \:  \:  \:  \dfrac{sec4\theta  - 1}{sec2\theta  - 1}  = \dfrac{tan4\theta }{tan\theta } \:  \:  \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:cos2x =  {2cos}^{2}x - 1 \: }} \\

\boxed{\sf{  \:cos2x = 1 -  {2sin}^{2}x  \: }} \\

\boxed{\sf{  \:cos2x =  {cos}^{2}x  -  {sin}^{2}x  \: }} \\

\boxed{\sf{  \:cos2x =  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x }  \: }} \\

\boxed{\sf{  \:sin2x =  \frac{2tanx }{1 +  {tan}^{2}x }  \: }} \\

\boxed{\sf{  \:tan2x =  \frac{2tanx }{1 -   {tan}^{2}x }  \: }} \\

\boxed{\sf{  \:sin3x = 3sinx -  {4sin}^{3}x \: }} \\

\boxed{\sf{  \:cos3x =  {4cos}^{3}x - 3cosx \: }} \\

\boxed{\sf{  \:tan3x =  \frac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2} x}  \: }} \\

Similar questions