prove that sec 8x -1\sec4x-1=tan8x\tan2x
Answers
We need to prove the following :-
[sec(8x) - 1] / [sec(4x) - 1] = tan(8x) / tan(2x) --------- I
So now, if we prove that
[sec(8x) - 1] * [tan(2x)] = [sec(4x) - 1] * tan(8x) ------- II
Then by cross multiplication law, we have also proved I.
[1 - cos(8x)] / cos(8x) * sin(2x) / cos(2x) = [1 - cos(4x)] / cos(4x) * sin(8x) / cos(8x) -------- III
We substituted sec(8x) as 1 / cos(8x) in II to get III
Now, III reduces to
[1 - cos(8x)] * sin(2x) / cos(2x) = [1 - cos(4x)] / cos(4x) * sin(8x)
since cos(8x) is canceled.
Now, we multiply the terms.
tan(2x) - [cos(8x) * tan(2x)] = [sin(8x) / cos(4x)] - sin(8x)
Now we use this formula for sin(2A) = 2 [sinA * cosA]
Here A = 8x
tan(2x) - [cos(8x) * tan(2x)] = 2[sin(4x) * cos(4x) / cos(4x)] - sin(8x)
This simplifies to
tan(2x) - [cos(8x) * tan(2x)] = [2 sin(4x)] - sin(8x)
tan(2x) { 1 - cos(8x) } = 2 sin(4x) - 2 sin(4x) * cos(4x)
tan(2x) { 1 - cos(8x) } = 2 sin(4x) { 1 - cos(4x) }
tan(2x) { 1 - cos(8x) } = 4 sin(2x) * cos(2x) { 1 - cos(4x) }
Substitute tan(2x) = sin(2x) / cos(2x)
{ 1 - cos(8x) } = 4 (2x) { 1 - cos(4x) } ------- IV
Now using cos(2A) = 2A - 1
Substitute this in IV with A = 8x and then 4x
[2 - 2 (4x)] / [2 - 2
(4x) /
/ (2x)
4 (2x) ------ LHS
Now RHS is also 4 (2x).
So the condition is for I to be true, here LHS must be equal to RHS.
Since this is satisfied.
[sec(8x) - 1] / [sec(4x) - 1] = tan(8x) / tan(2x) is true
Hence Proved.