prove that √ sec a -1 / sec a+1 + √ seca+1 /seca-1 = 2 cosec a
Answers
Correct question :-
Given to prove that :-
Solution :-
Take L.H.S
Take L.C.M to the denominator
Applying (a+b)(a-b) formula to the denominator
(a+b)(a-b) = a²-b²
We know that from Trigonometric identities ,
sec²A-tan²A = 1
sec²A -1 = tan²A
From trigonometric relations ,
secA = 1/cosA
tanA = sinA/cosA
From trigonometric relations ,
sinA = 1/cscA
Hence proved
Used formulae :-
Trigonometric relations :-
secA = 1/cosA
tanA = sinA/cosA
sinA = 1/cscA
Trigonometric identity :-
sec²A - tan²A = 1
sec²A- 1 = tan²A
Algebraic identity:-
(a+b)(a-b) = a²-b²
Correct question :-
Given to prove that :-
Solution :-
Take L.H.S
Take L.C.M to the denominator
Applying (a+b)(a-b) formula to the denominator
(a+b)(a-b) = a²-b²
We know that from Trigonometric identities ,
sec²A-tan²A = 1
sec²A -1 = tan²A
From trigonometric relations ,
secA = 1/cosA
tanA = sinA/cosA
From trigonometric relations ,
sinA = 1/cscA
Hence proved
Used formulae :-
Trigonometric relations :-
secA = 1/cosA
tanA = sinA/cosA
sinA = 1/cscA
Trigonometric identity :-
sec²A - tan²A = 1
sec²A- 1 = tan²A
Algebraic identity:-
(a+b)(a-b) = a²-b²