Math, asked by gaganreddy53535, 7 months ago

Prove that
(sec A-1)/(secA+1)=(1-cosA)/(1+cosA)​

Answers

Answered by amankumaraman11
4

 \rm{(sec A-1)/(secA+1)=(1-cosA)/(1+cosA)} \\  \\  \leadsto \bf{ \frac{sec A-1}{secA+1} } =  \frac{1 - cosA}{1+cosA}  \\

Solving the LHS,

 \to \tt \dfrac{ \frac{1}{cosA} - 1 }{ \frac{1}{cosA} + 1 }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \bigg\{  secA =  \frac{1}{cosA} \bigg\}\\  \\  \to \tt \dfrac{ \frac{1 - cosA}{cosA} }{ \frac{1  + cosA}{cosA}}  \\  \\  \rm {}{cosA} \:  \: gets \:  \: cancelled. \\  \\  \to  \red{\sf \frac{1   -  cosA}{1  + cosA} }

Thus, RHS has been obtained on solving the LHS.

Hence,

 \sf \huge \red{LHS = RHS}

Similar questions