Math, asked by anushkasatya740, 9 months ago

*Prove that sec A (1 - sin A)(sec A + tan A) = 1.​

Answers

Answered by vijaya2004
1

Answer:

LHS=secA(1-sina)(secA+tana)

=(1/cosa)(1-sina)(1/cosa+Sina/cosa)

=(1-sin^a/cos ^a using (a+b)(a-b)=a^-b^

=cos^a/cos^a using 1- sin^a=cos^a

.1=RHS

Answered by BrainlySamaira
15

\huge\underline\textsf{Question:- }

\boxed{\textsf{ Sec A(1-sin A)(sec A +tan A) =1}}

\huge\underline\textsf{Explantion:- }

\large\implies\tt \frac{1}{ \cos A } (1 -  \sin A )( \frac{1}{ \cos A }  +  \frac{ \sin A }{ \cos A } )

\large\implies\tt \frac{(1 -  \sin A )}{ \cos A } ( \frac{1}{ \cos A }  +  \frac{ \sin A}{ \cos A })

\large\implies\tt \frac{(1 -  \sin A) (1 +  \sin A )}{ \cos A   \times  \cos A }

\large \underline\textsf{identity Used:-3 }

\red{\boxed{\bf(a + b)(a - b) = a {}^{2}  - b {}^{2} }}

\underline\textsf{Now,}

\large\implies\tt \frac{1 {}^{2} -  \sin {}^{2} A }{ \cos {}^{2} A }

\large\implies{\overbrace{\boxed{\tt \frac{1 -  \sin {}^{2} A }{ \cos {}^{2} A} }}}

\large\leadsto {\boxed{\tt= 1 = RHS}}

\large\underline{\underline{\texttt{\purple{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:Hence proved.}}}}

Similar questions