Prove that sec A (1 – sin A)(sec A + tan A) = 1.
Answers
Answered by
0
1−sinA1+sinA=(1−sinA)(1−sinA)(1+sinA)(1−sinA)
=(1−sinA)21−sin2A
=(1−2sinA+sin2A)cos2A
=(1cos2A−2sinAcos2A+sin2Acos2A)
=(sec2A−2.1cosA.sinAcosA+tan2A)
=(sec2A−2secA.tanA+tan2A)
=(secA−tanA)2
Hence proved.
Note: The question should be (1−sinA1+sinA)=(secA−tanA)2
Answered by
0
Answer:
Step-by-step explanation:
⇒sec A (1 – sin A)(sec A + tan A) = 1.
⇒sec A (1 – sin A)()
⇒sec A (1 – sin A)()
⇒sec A (1 – sin A) sec A (1 + sin A)
using (a+b)(a-b)=(a²-b²)
⇒sec A (1-sin²A)
as we know 1-sin²A = cosA
⇒sec A (cos A)
⇒1
Similar questions