prove that sec a (1-sin a) (sec a + tan a) =1
Answers
Answered by
264
seca(1-sina)(1/cosa+Sina/cosa)
=> seca(1-sina)(1-sina)/cosa
=> seca(1-sin²a)/cosa
=> seca cos ²a/cosa
=> 1/cos a×cosa
=1
I HOPE ITS HELP YOU DEAR,
THANKS
=> seca(1-sina)(1-sina)/cosa
=> seca(1-sin²a)/cosa
=> seca cos ²a/cosa
=> 1/cos a×cosa
=1
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
53
Answer:
Step-by-step explanation:
L.H.S=sec a (1-sin a)(sec a + tan a)
=1/cos a(1-sin a)(1/cos a+sin a/cos a)
=(1-sin a)(1+sin a)/cos a×cos a
As we know, (a-b)×(a+b)=a^2-b^2
=(1^2- sin^2a)/cos^2a
=cos^2a/cos^2a {sin^2a+cos^2a=1,
cos^a=1-sin^a}
=1.
Hence, L.H.S = R.H.S
PROVED.
Similar questions