Prove that: sec A (1 – sin A)(sec A + tan A) = 1.
Answers
Answered by
1
Given : sec A {1 - sin A} {sec A + tan A} = 1
Proof :
⟹ sec A {1 - sin A} {sec A + tan A} = 1
⟹ sec A {1 - sin A} {1/cos A + sin A/cos A} = 1
⟹ sec A {1 - sin A} {(1 + sin A)/cos A} = 1
⟹ sec A {(1 - sin² A)/cos A} = 1
⟹ sec A {cos²A/cos A} = 1
⟹ sec A {cos A} = 1
⟹ 1/cos A {cos A} = 1
⟹ 1 = 1
∴ It's proved that, sec A {1 - sin A} {sec A + tan A} = 1
{More info : Formulae used in proof are ;
- sec θ = 1/cos θ
- tan θ = sin θ/cos θ
- (a - b) (a + b) = a² - b² i.e. (1 - sin A) (1 + sin A) = (1 - sin² A)
- 1 - sin² θ = cos² θ }
Answered by
1
Answer:
• Taking LHS
a ^2 - b^2 = ( a +b ) ( a - b )
LHS = RHS
Hence proved .
Similar questions
Physics,
1 month ago
Social Sciences,
1 month ago
English,
3 months ago
English,
10 months ago
English,
10 months ago