Math, asked by studymela86, 2 months ago

Prove that sec A (1 - sin A) (sec A + tan A) = 1​

Answers

Answered by richapariya121pe22ey
0

Step-by-step explanation:

 \sec\alpha (1 -  \sin\alpha  )( \sec \alpha   +  \tan \alpha  ) \\  =  \frac{1}{ \cos \alpha } (1 -  \sin \alpha  )( \frac{1}{ \cos \alpha  }  +  \frac{ \sin \alpha  }{ \cos \alpha  } ) \\  = \frac{1}{ \cos \alpha } (1 -  \sin \alpha  )( \frac{1 +  \sin\alpha }{ \cos \alpha  }   )  \\  =  \frac{1}{ \cos \alpha }  \times  \frac{(1 -  { \sin}^{2}  \alpha )}{ \cos( \alpha ) }  \\  =  \frac{1 -  { \sin}^{2}  \alpha }{ { \cos }^{2}  \alpha }  \\  =  \frac{  { \cos }^{2} \alpha  }{  { \cos }^{2}   \alpha }  = 1

Similar questions