Prove that sec A (1 - sin A) (sec A + tan A) = 1
Answers
Answered by
4
secA(1 - sinA) (secA + tanA)
(secA - secA.sinA) (secA + tanA)
(secA - sinA/cosA) (secA +tanA)
(secA - tanA) (secA + tanA)
(sec^2A - tan^2A)
because { sec^2A = 1 + tan^2A }
then (sec^2A - tan^2A) = 1.
(secA - secA.sinA) (secA + tanA)
(secA - sinA/cosA) (secA +tanA)
(secA - tanA) (secA + tanA)
(sec^2A - tan^2A)
because { sec^2A = 1 + tan^2A }
then (sec^2A - tan^2A) = 1.
Answered by
103
Step-by-step explanation:
☆ According to given question:
☆ PROOF:
Similar questions