Math, asked by AnujChauhan09052003, 1 year ago

Prove that sec A (1 - sin A) (sec A + tan A) = 1

Answers

Answered by THS582003
4
secA(1 - sinA) (secA + tanA)
(secA - secA.sinA) (secA + tanA)
(secA - sinA/cosA) (secA +tanA)
(secA - tanA) (secA + tanA)
(sec^2A - tan^2A)
because { sec^2A = 1 + tan^2A }
then (sec^2A - tan^2A) = 1.

Answered by BrainlyConqueror0901
103

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\blue{to \: prove}} \\  { \purple{ \boxed{ \red{  secA  (1 -  sinA)( secA  +   tanA) = 1 }}}} \\

According to given question:

PROOF:

 \to secA  (1 -  sinA)( secA +   tanA) = 1 \\ lhs  \\  \to  secA (1 -   sinA )( secA  +  tanA ) \\  \to  (\frac{1}{ cosA}) (1 -  sinA )( frac{1}{ cosA }  +  \frac{ sinA }{ cosA } ) \\  \to  \frac{(1 -  sinA)(1 +  sinA)  }{ cos^{2} A }  \\  \to  \frac{1 -  sin ^{2} A }{ cos^{2} A }  \\   \to  \frac{ cos ^{2} A }{  cos ^{2} A }  \\  \to 1

\huge{\pink{\boxed{\green{\underline{\sf{PROVED:}}}}}}

Similar questions