Prove that sec A ( 1- sin A) (secA + tan A) = 1 9. Prove that = 10 . Prove that = , using the identity sec2θ = 1+tan2θ.
Answers
Answered by
0
Step-by-step explanation:
secA(1-sinA)(1/cos A+sinA/cosA)
secA(1-sinA)(1+sinA/cosA)
1/cosA(1-sin²A/cosA)
1-sin²A/cos²A=cos²A/cos²A=1 (sin²A+cos²A=1)
proved
sec²A=1+tan²A
sin²A+cos²A=1
dividing all term by cos²A
tan²A+1=sec²A
Similar questions