Math, asked by negisneha204, 3 months ago

prove that sec A(1-sinA) (sac A+tan A) =1​

Answers

Answered by Anonymous
8

Answer:

Explanation:

To Prove :

  • secA(1 - sinA) (secA + tanA) = 1

Formula to be used :

  • secA = 1/cosA
  • 1 - sin²A = cos²A
  • (a - b) (a + b) = a² - b²
  • tanA = sinA/cosA

Proof :

LHS

secA(1 - sinA) (secA + tanA)

=> 1/cosA(1 - sinA) (1/cosA + sinA/cosA)

=> (1 - sinA)/cosA (1 + sinA/cosA)

=> (1 - sinA) (1 + sinA)/cosA × cosA

=> (1² - sin²A)/cos²A

=> 1 - sin²A/cos²A

=> cos²A/cos²A

=> 1

RHS

  • Hence Proved!!

Answered by TheEnchanted
3

\bf{\bold{\purple{Question ↴}}}

Prove that sec A(1-sinA)( sec A + tan A) =1

\bf{\bold{\purple{Forumulae~used ↴}}}

  • SecA = \bf\dfrac{1}{cosA}

  • 1 - sin²A = cos²A

  • tanA = \bf\dfrac{sinA}{cosA}

  • (a - b) (a + b) = a² - b²

\bf{\bold{\purple{Answer ↴}}}

LHS

SecA(1-sinA) (secA + tana) = 1

\bf\dfrac{1}{cosA} (1-sinA) (\bf\dfrac{1}{cosA} + \bf\dfrac{sinA}{cosA})

\bf\dfrac{ (1-sinA}{cosA} ( \bf\dfrac{1 + sinA}{cosA})

\bf\dfrac{(1 - sinA) (1 + sinA) }{cosA × cosA}

\bf\dfrac{ (1² - sin²A) }{ cos²A}

\bf\dfrac{cos²A}{cos²A}

↬1 = RHS

\bf{\bold{\purple{Hence~proved}}}

Similar questions