prove that sec A(1-sinA) (sac A+tan A) =1
Answers
Answered by
8
Answer:
Explanation:
To Prove :
- secA(1 - sinA) (secA + tanA) = 1
Formula to be used :
- secA = 1/cosA
- 1 - sin²A = cos²A
- (a - b) (a + b) = a² - b²
- tanA = sinA/cosA
Proof :
LHS
secA(1 - sinA) (secA + tanA)
=> 1/cosA(1 - sinA) (1/cosA + sinA/cosA)
=> (1 - sinA)/cosA (1 + sinA/cosA)
=> (1 - sinA) (1 + sinA)/cosA × cosA
=> (1² - sin²A)/cos²A
=> 1 - sin²A/cos²A
=> cos²A/cos²A
=> 1
RHS
- Hence Proved!!
Answered by
3
Prove that sec A(1-sinA)( sec A + tan A) =1
- SecA =
- 1 - sin²A = cos²A
- tanA =
- (a - b) (a + b) = a² - b²
LHS
SecA(1-sinA) (secA + tana) = 1
↬ (1-sinA) ( + )
↬ ( )
↬
↬
↬
↬1 = RHS
Similar questions