Math, asked by avikroychoudhury628, 3 months ago

Prove that,(sec A + 1 - tan A)/(sec A + 1 + tan A) + (tan A + sec A - 1)/( tan A - sec A + 1) = 2 sec A.​

Answers

Answered by ravi2303kumar
1

Step-by-step explanation:

To prove : \frac{(sec A + 1 - tan A)}{(sec A +1 + tan A)} + \frac{(tan A + sec A - 1)}{( tan A - sec A + 1)} = 2 sec A.​

LHS = \frac{(sec A + 1 - tan A)}{(sec A +1 + tan A)}\frac{(sec A + 1 - tan A)}{(sec A - 1 + tan A)} + \frac{(tan A + sec A - 1)}{( tan A - sec A + 1)}

= \frac{(sec A  - tan A  + 1)} {(sec A + tan A+1)} + \frac{(tan A + sec A - 1)}{( tan A - sec A + 1)}

= \frac{(sec A  - tan A  + (sec^2A-tan^2A))} {(sec A + tan A+1)} + \frac{(tan A + sec A - (sec^2A-tan^2A))}{( tan A - sec A + 1)}

= \frac{sec A  - tan A  + (sec A + tan A)(sec A - tan A)}{(sec A + tan A+1)} +  \frac{tan A + sec A - (sec A + tan A)(sec A - tan A)}{( tan A - sec A + 1)}

= \frac{(sec A - tan A)(1+ sec A + tan A)}{(sec A + tan A+1)} + \frac{(sec A + tan A)(1 - (sec A - tan A)}        {( tan A - sec A + 1)}

= \frac{(sec A - tan A)(sec A + tan A+1)}{(sec A + tan A+1)} + \frac{(sec A + tan A)(1 - sec A + tan A)}        {( tan A - sec A + 1)}

= secA-tanA + secA+tanA

= 2secA

= RHS

LHS = RHS

Hence proved

Similar questions