Math, asked by fatimamahveen555, 7 months ago

Prove that+ sec A - cos A ) .(cotA+tanA )=tan A.secA

Answers

Answered by InfiniteSoul
2

\sf{\orange{\boxed{\bold{ Solution }}}}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( sec A - cos A \bigg)\bigg( cotA + tan A \bigg) = tanA . Sec A }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Sec A = \dfrac{1}{cosA}}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Cot A =\dfrac{1}{tanA}}}}}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{1}{CosA} - CosA \bigg) \bigg( \dfrac{1}{tanA} + tanA \bigg) = tanA . Sec A }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{1 - cos^2A}{CosA} \bigg) \bigg( \dfrac{1 + tan^2A}{tanA} \bigg)   = tanA . Sec A }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{1 - cos^2A = Sin^2A}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{1 + tan^2A = sec^2A}}}}

⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sin^2A}{CosA} \bigg) \bigg( \dfrac{sec^2A}{tanA}\bigg)  = tanA . Sec A }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{tanA =\dfrac{SinA}{CosA}}}}}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sin^2A}{CosA} \bigg) \bigg( \dfrac{sec^2A}{\dfrac{SinA}{CosA}} \bigg)  = tanA . Sec A }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sin^2A}{CosA} \bigg) \bigg( {sec^2A} \div\dfrac{sinA} {cosA} \bigg) = tanA . Sec A }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sin^2A}{CosA} \bigg) \bigg( \dfrac{sec^2A\times SinA}{cosA} \bigg) = tanA . Sec A }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sin^2A \times sec^2A \times CosA}{CosA\times SinA} \bigg)   = tanA . Sec A }}

⠀⠀⠀⠀

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sin^2A \times sec^2A }{ SinA} \bigg)   = tanA . Sec A }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ \bigg( \dfrac{sinA\times SinA \times secA\times SecA }{SinA} \bigg)   = tanA . Sec A }}

⠀⠀⠀⠀

: \implies\: \sf{\bold{{sinA \times secA \times secA}   = tanA . Sec A }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{SecA = \dfrac{1}{CosA}}}}}

⠀⠀

: \implies\: \sf{\bold{ sinA\times \dfrac{1}{CosA}\times SecA  = tanA . Sec A }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{\dfrac{SinA}{CosA} = tanA}}}}

⠀⠀⠀⠀

: \implies\: \sf{\bold{ tanA . SecA   = tanA . Sec A }}

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀.....HENCE PROVED

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀

Similar questions