Prove that :– (sec a + cos a )(sec a - Cos a) = (tan square a + sin square a)
Answers
Answered by
0
Step-by-step explanation:
taking l.h.s
=(sec a+cos a)(sec a- cos a)
since,(a+b)(a-b)=a square-b square
=sec square a - cos square a
since, sec a = 1/cos a
therefore, sec square a=1/cos square a
=1/cos square a - cos square a
taking lcm
=[1 - (cos square a)square]/cos square a
since,1 can be written as 1 square
=[1 square -(cos square a)square]/cos square a
since, a square - b square = (a+b)(a-b)
=[(1-cos square a)(1+cos square a)]/cos square a
since,1- cos square a =sin square a
=sin square a(1+cos square a)/cos square a
=sin square a+ sin square a cos square a/cos square a
=sin square a/cos square a + sin square a cos square a/ cos square a
since,sin square a / cos square a=tan square a
tan square a+ sin square a
LHS=RHS
hence proved
Similar questions