Math, asked by bachaayu, 1 year ago

prove that sec a - cosec a 1 +tan a +cot a = tan a sec a - cot a cosec a

Answers

Answered by Anonymous
5

Hey, here is your answer...

need \: to \: prove... \\  \\  \sec( \alpha ) -  \csc( \alpha ) +  \tan( \alpha ) +  \cot( \alpha ) =  \tan( \alpha ) \sec( \alpha ) -  \cot( \alpha ) \csc( \alpha ) .... \\  \\  \\  =  >  \:  \sec( \alpha ) -  \csc( \alpha ) +  \tan( \alpha ) +  \cot( \alpha)  \\  =  >  \: (1 \div  \cos( \alpha )) - (1 \div  \sin( \alpha )) +  \tan( \alpha )  + (1 \div  \tan( \alpha )) \\  =  >  \: (1 \div  \cos( \alpha )) - (1 \div  \sin( \alpha )) + ( ((\sin( \alpha )) \div ( \cos( \alpha ))) + (( (\cos( \alpha )) \div ( \sin( \alpha ))) \\  =  >  \: (( \sin( \alpha ) + 1) \div ( \cos( \alpha ))) + (( \cos( \alpha ) - 1) \div ( \sin( \alpha ))) \\  =  >  \: ((( \sin( \alpha ) + 1) ( \sin( \alpha )) + ((( \cos( \alpha ) - 1)( \cos( \alpha ))) \div ( \sin( \alpha ) \cos( \alpha )) \\  =  > \: ( \sin( \alpha ) +  { \sin }^{2}( \alpha ) +  { \cos }^{2}( \alpha ) -  \cos( \alpha )) \div ( \sin( \alpha ) \cos( \alpha )) \\  =  >  \: (1 +  \sin( \alpha ) -  \cos( \alpha )) \div ( \sin( \alpha ) \cos( \alpha )) \\  =  >  \:   (csc( \alpha ) \sec( \alpha ) +  \sec( \alpha ) -  \csc( \alpha )) \\  =  > ( \tan( \alpha ) \sec( \alpha ) -  \cot( \alpha ) \csc( \alpha )) \\  \\  \\  \\  \\ hence \: proved... \\  \\  \\ hope \: this \: helps \: you.. \\ thank \: you.. \\  \\ plzz \: mark \: me \: as \: brainliest.....

☺️

Answered by Anonymous
4

Answer:

Hope it helps you friend.

Attachments:
Similar questions