Math, asked by Navnish, 1 year ago

prove that (sec A + tan A) (1 - sin A) = cos A

Answers

Answered by Anonymous
311
Hello

===================================

Given us,

( secA + tanA ) ( 1 - sinA )

we know that

secA = 1/cosA

tanA = sins/cosA

now

( 1 /cosA + sinA /cosA ) ( 1 - sinA )

= ( 1 + sinA ) ( 1 - sinA )/ cosA

= 1² - sin²A / cosA

= cos²A / cosA

= cosA

RHS

thanks

===================================

shreya1231: topper xD
shreya1231: great answered
Navnish: thx
shreya1231: ok ji , topper ke badle should call u net.... XD
shreya1231: XD
Answered by KomalSrinivas
2

Given: (sec A + tan A) (1 - sin A) = cos A

To Find: Prove L.H.S and R.H.S

Solution:

R.H.S = cos A

L.H.S

(sec A + tan A) (1 - sin A)

= sec A - sec A sin A + tan A - tan A sin A

= sec A - \frac{sin A}{cos A} + tan A - \frac{sin^{2}A }{cos A}  [Converting sec A into \frac{1}{cos A} and tan A into \frac{sin A}{cos A},]

= sec A - tan A + tan A - \frac{1-cos^{2} A}{cos A}  [sin²A + cos²A = 1

                                                      ⇒sin²A = 1 - cos²A ]

= sec A - \frac{1}{cos A} + \frac{cos^{2}A }{cos A}

= sec A - sec A + cos A

= cos A

∴ L.H.S = R.H.S (Proved)

Answer: L.H.S = R.H.S (Proved)

Similar questions