prove that (sec A + tan A) (1 - sin A) = cos A
Answers
Answered by
311
Hello
===================================
Given us,
( secA + tanA ) ( 1 - sinA )
we know that
secA = 1/cosA
tanA = sins/cosA
now
( 1 /cosA + sinA /cosA ) ( 1 - sinA )
= ( 1 + sinA ) ( 1 - sinA )/ cosA
= 1² - sin²A / cosA
= cos²A / cosA
= cosA
RHS
thanks
===================================
===================================
Given us,
( secA + tanA ) ( 1 - sinA )
we know that
secA = 1/cosA
tanA = sins/cosA
now
( 1 /cosA + sinA /cosA ) ( 1 - sinA )
= ( 1 + sinA ) ( 1 - sinA )/ cosA
= 1² - sin²A / cosA
= cos²A / cosA
= cosA
RHS
thanks
===================================
shreya1231:
topper xD
Answered by
2
Given: (sec A + tan A) (1 - sin A) = cos A
To Find: Prove L.H.S and R.H.S
Solution:
R.H.S = cos A
L.H.S
(sec A + tan A) (1 - sin A)
= sec A - sec A sin A + tan A - tan A sin A
= sec A - + tan A - [Converting sec A into and tan A into ,]
= sec A - tan A + tan A - [sin²A + cos²A = 1
⇒sin²A = 1 - cos²A ]
= sec A - +
= sec A - sec A + cos A
= cos A
∴ L.H.S = R.H.S (Proved)
Answer: L.H.S = R.H.S (Proved)
Similar questions