Math, asked by somyanainwani1009, 10 months ago

prove that sec a - tan a is equal to 1 upon sec a + tan a​

Answers

Answered by Anonymous
12

Given LHS :

  • \sf{sec\:A-\:tan\:A}

Given RHS :

  • \sf{\dfrac{1}{sec\:A\:+\:tan\:A}}

To prove :

  • \sf{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}

Proof :

Taking RHS :

\sf{\dfrac{1}{sec\:A+tan\:A}}

Multiply numerator and denominator by sec A - Tan A.

\sf{\dfrac{1}{sec\:A+\:tan\:A}\:\times\:\dfrac{sec\:A\:-\:tan\:A}{sec\:A\:-\:tan\:A}}

\sf{\dfrac{1\:\times\:sec\:A\:-\:tan\:A}{(sec\:A\:+\:cos\:A)\:\times\:(sec\:A\:-\:Tan\:A)}}

\sf{\dfrac{sec\:A\:-\:tan\:A}{sec^2\:A\:-\:tan^2\:A}}

\bold{\big[\because\:(a+b)(a-b)=a^2-b^2\big]}

\sf{\dfrac{sec\:A\:-\:tan\:A}{1}}

\bold{\big[\because\:sec^2\:A\:-\:tan^2\:A\:=\:1\big]}

\sf{sec\:A\:-\:tan\:A}

Hence proved.

\large{\boxed{\bold{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}}}

Similar questions