Math, asked by Akhil7532, 3 months ago

prove that sec a - tan a is equal to 1 upon sec a + tan a​

Answers

Answered by Anonymous
76

\underline{\boxed{\orange{\sf Given \: LHS :\:  }}}

\sf{sec\:A-\:tan\:A}

\underline{\boxed{\purple{\sf Given \: LHS:}}}

\sf{\dfrac{1}{sec\:A\:+\:tan\:A}}

\underline{\boxed{\orange{\sf To \: prove: }}}

\sf{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}

\underline{\boxed{\purple{\sf Proof: }}}

Taking RHS :

\sf{\dfrac{1}{sec\:A+tan\:A}}

Multiply numerator and denominator by sec A - Tan A.

\sf{\dfrac{1}{sec\:A+\:tan\:A}\:\times\:\dfrac{sec\:A\:-\:tan\:A}{sec\:A\:-\:tan\:A}}

\sf{\dfrac{1\:\times\:sec\:A\:-\:tan\:A}{(sec\:A\:+\:cos\:A)\:\times\:(sec\:A\:-\:Tan\:A)}}

\sf{\dfrac{sec\:A\:-\:tan\:A}{sec^2\:A\:-\:tan^2\:A}}

\bold{\big[\because\:(a+b)(a-b)=a^2-b^2\big]}

\sf{\dfrac{sec\:A\:-\:tan\:A}{1}}

\bold{\big[\because\:sec^2\:A\:-\:tan^2\:A\:=\:1\big]}

\sf{sec\:A\:-\:tan\:A}

\underline{\boxed{\orange{\sf Hence \: Proved: }}}

\large{\boxed{\bold{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}}}

Answered by akanksha2614
0

Answer:

\underline{\boxed{\orange{\sf Given \: LHS :\: }}}

GivenLHS:

\sf{sec\:A-\:tan\:A}secA−tanA

\underline{\boxed{\purple{\sf Given \: LHS:}}}

GivenLHS:

\sf{\dfrac{1}{sec\:A\:+\:tan\:A}}

secA+tanA

1

\underline{\boxed{\orange{\sf To \: prove: }}}

Toprove:

\sf{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}secA−tanA=

secA+tanA

1

\underline{\boxed{\purple{\sf Proof: }}}

Proof:

Taking RHS :

\sf{\dfrac{1}{sec\:A+tan\:A}}

secA+tanA

1

Multiply numerator and denominator by sec A - Tan A.

\sf{\dfrac{1}{sec\:A+\:tan\:A}\:\times\:\dfrac{sec\:A\:-\:tan\:A}{sec\:A\:-\:tan\:A}}

secA+tanA

1

×

secA−tanA

secA−tanA

\sf{\dfrac{1\:\times\:sec\:A\:-\:tan\:A}{(sec\:A\:+\:cos\:A)\:\times\:(sec\:A\:-\:Tan\:A)}}

(secA+cosA)×(secA−TanA)

1×secA−tanA

\sf{\dfrac{sec\:A\:-\:tan\:A}{sec^2\:A\:-\:tan^2\:A}}

sec

2

A−tan

2

A

secA−tanA

\bold{\big[\because\:(a+b)(a-b)=a^2-b^2\big]}[∵(a+b)(a−b)=a

2

−b

2

]

\sf{\dfrac{sec\:A\:-\:tan\:A}{1}}

1

secA−tanA

\bold{\big[\because\:sec^2\:A\:-\:tan^2\:A\:=\:1\big]}[∵sec

2

A−tan

2

A=1]

\sf{sec\:A\:-\:tan\:A}secA−tanA

\underline{\boxed{\orange{\sf Hence \: Proved: }}}

HenceProved:

\large{\boxed{\bold{sec\:A-\:tan\:A\:=\:\dfrac{1}{sec\:A\:+\:tan\:A}}}}

secA−tanA=

secA+tanA

1

Similar questions